Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria.

Identifieur interne : 000C60 ( Main/Exploration ); précédent : 000C59; suivant : 000C61

Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria.

Auteurs : Catrine Johansson [Royaume-Uni] ; Kathryn L. Kavanagh ; Opher Gileadi ; Udo Oppermann

Source :

RBID : pubmed:17121859

Descripteurs français

English descriptors

Abstract

Human mitochondrial glutaredoxin 2 (GLRX2), which controls intracellular redox balance and apoptosis, exists in a dynamic equilibrium of enzymatically active monomers and quiescent dimers. Crystal structures of both monomeric and dimeric forms of human GLRX2 reveal a distinct glutathione binding mode and show a 2Fe-2S-bridged dimer. The iron-sulfur cluster is coordinated through the N-terminal active site cysteine, Cys-37, and reduced glutathione. The structures indicate that the enzyme can be inhibited by a high GSH/GSSG ratio either by forming a 2Fe-2S-bridged dimer that locks away the N-terminal active site cysteine or by binding non-covalently and blocking the active site as seen in the monomer. The properties that permit GLRX2, and not other glutaredoxins, to form an iron-sulfur-containing dimer are likely due to the proline-to-serine substitution in the active site motif, allowing the main chain more flexibility in this area and providing polar interaction with the stabilizing glutathione. This appears to be a novel use of an iron-sulfur cluster in which binding of the cluster inactivates the protein by sequestering active site residues and where loss of the cluster through changes in subcellular redox status creates a catalytically active protein. Under oxidizing conditions, the dimers would readily separate into iron-free active monomers, providing a structural explanation for glutaredoxin activation under oxidative stress.

DOI: 10.1074/jbc.M608179200
PubMed: 17121859


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria.</title>
<author>
<name sortKey="Johansson, Catrine" sort="Johansson, Catrine" uniqKey="Johansson C" first="Catrine" last="Johansson">Catrine Johansson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kavanagh, Kathryn L" sort="Kavanagh, Kathryn L" uniqKey="Kavanagh K" first="Kathryn L" last="Kavanagh">Kathryn L. Kavanagh</name>
</author>
<author>
<name sortKey="Gileadi, Opher" sort="Gileadi, Opher" uniqKey="Gileadi O" first="Opher" last="Gileadi">Opher Gileadi</name>
</author>
<author>
<name sortKey="Oppermann, Udo" sort="Oppermann, Udo" uniqKey="Oppermann U" first="Udo" last="Oppermann">Udo Oppermann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17121859</idno>
<idno type="pmid">17121859</idno>
<idno type="doi">10.1074/jbc.M608179200</idno>
<idno type="wicri:Area/Main/Corpus">000C93</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C93</idno>
<idno type="wicri:Area/Main/Curation">000C93</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C93</idno>
<idno type="wicri:Area/Main/Exploration">000C93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria.</title>
<author>
<name sortKey="Johansson, Catrine" sort="Johansson, Catrine" uniqKey="Johansson C" first="Catrine" last="Johansson">Catrine Johansson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kavanagh, Kathryn L" sort="Kavanagh, Kathryn L" uniqKey="Kavanagh K" first="Kathryn L" last="Kavanagh">Kathryn L. Kavanagh</name>
</author>
<author>
<name sortKey="Gileadi, Opher" sort="Gileadi, Opher" uniqKey="Gileadi O" first="Opher" last="Gileadi">Opher Gileadi</name>
</author>
<author>
<name sortKey="Oppermann, Udo" sort="Oppermann, Udo" uniqKey="Oppermann U" first="Udo" last="Oppermann">Udo Oppermann</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Dimerization (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Isoenzymes (chemistry)</term>
<term>Isoenzymes (metabolism)</term>
<term>Mitochondria (enzymology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (isolation & purification)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Cristallisation (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Dimérisation (MeSH)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Isoenzymes (composition chimique)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Mitochondries (enzymologie)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (isolement et purification)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Iron-Sulfur Proteins</term>
<term>Isoenzymes</term>
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Iron-Sulfur Proteins</term>
<term>Isoenzymes</term>
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Isoenzymes</term>
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Disulfure de glutathion</term>
<term>Ferrosulfoprotéines</term>
<term>Glutathion</term>
<term>Isoenzymes</term>
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Crystallization</term>
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Protein Structure, Secondary</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Cristallisation</term>
<term>Cristallographie aux rayons X</term>
<term>Dimérisation</term>
<term>Données de séquences moléculaires</term>
<term>Glutarédoxines</term>
<term>Humains</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sites de fixation</term>
<term>Structure secondaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human mitochondrial glutaredoxin 2 (GLRX2), which controls intracellular redox balance and apoptosis, exists in a dynamic equilibrium of enzymatically active monomers and quiescent dimers. Crystal structures of both monomeric and dimeric forms of human GLRX2 reveal a distinct glutathione binding mode and show a 2Fe-2S-bridged dimer. The iron-sulfur cluster is coordinated through the N-terminal active site cysteine, Cys-37, and reduced glutathione. The structures indicate that the enzyme can be inhibited by a high GSH/GSSG ratio either by forming a 2Fe-2S-bridged dimer that locks away the N-terminal active site cysteine or by binding non-covalently and blocking the active site as seen in the monomer. The properties that permit GLRX2, and not other glutaredoxins, to form an iron-sulfur-containing dimer are likely due to the proline-to-serine substitution in the active site motif, allowing the main chain more flexibility in this area and providing polar interaction with the stabilizing glutathione. This appears to be a novel use of an iron-sulfur cluster in which binding of the cluster inactivates the protein by sequestering active site residues and where loss of the cluster through changes in subcellular redox status creates a catalytically active protein. Under oxidizing conditions, the dimers would readily separate into iron-free active monomers, providing a structural explanation for glutaredoxin activation under oxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17121859</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>282</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2007</Year>
<Month>Feb</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria.</ArticleTitle>
<Pagination>
<MedlinePgn>3077-82</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Human mitochondrial glutaredoxin 2 (GLRX2), which controls intracellular redox balance and apoptosis, exists in a dynamic equilibrium of enzymatically active monomers and quiescent dimers. Crystal structures of both monomeric and dimeric forms of human GLRX2 reveal a distinct glutathione binding mode and show a 2Fe-2S-bridged dimer. The iron-sulfur cluster is coordinated through the N-terminal active site cysteine, Cys-37, and reduced glutathione. The structures indicate that the enzyme can be inhibited by a high GSH/GSSG ratio either by forming a 2Fe-2S-bridged dimer that locks away the N-terminal active site cysteine or by binding non-covalently and blocking the active site as seen in the monomer. The properties that permit GLRX2, and not other glutaredoxins, to form an iron-sulfur-containing dimer are likely due to the proline-to-serine substitution in the active site motif, allowing the main chain more flexibility in this area and providing polar interaction with the stabilizing glutathione. This appears to be a novel use of an iron-sulfur cluster in which binding of the cluster inactivates the protein by sequestering active site residues and where loss of the cluster through changes in subcellular redox status creates a catalytically active protein. Under oxidizing conditions, the dimers would readily separate into iron-free active monomers, providing a structural explanation for glutaredoxin activation under oxidative stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Johansson</LastName>
<ForeName>Catrine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kavanagh</LastName>
<ForeName>Kathryn L</ForeName>
<Initials>KL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gileadi</LastName>
<ForeName>Opher</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oppermann</LastName>
<ForeName>Udo</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2FLS</AccessionNumber>
<AccessionNumber>2HT9</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>11</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516008">GLRX2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
<ArticleId IdType="pii">M608179200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M608179200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Oxfordshire</li>
</region>
<settlement>
<li>Oxford</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Gileadi, Opher" sort="Gileadi, Opher" uniqKey="Gileadi O" first="Opher" last="Gileadi">Opher Gileadi</name>
<name sortKey="Kavanagh, Kathryn L" sort="Kavanagh, Kathryn L" uniqKey="Kavanagh K" first="Kathryn L" last="Kavanagh">Kathryn L. Kavanagh</name>
<name sortKey="Oppermann, Udo" sort="Oppermann, Udo" uniqKey="Oppermann U" first="Udo" last="Oppermann">Udo Oppermann</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Johansson, Catrine" sort="Johansson, Catrine" uniqKey="Johansson C" first="Catrine" last="Johansson">Catrine Johansson</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C60 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C60 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17121859
   |texte=   Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17121859" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020